ALTERNATIVNÉ SPÓSOBY BOJA S NEŽIADUCOU VEGETÁCIOU

Miriam Maľová • Valéria Longauerová

Úvod


Materiál a metodika

Charakteristika výskumné plochy na lokalitě Kysuce – Husák


Charakteristika výskumné plochy na lokalite Krupina – Nová Hora


Založenie výskumných ploch

Výskumné plochy, s jednotlivými subplochami, v prípade umeleckého obnovy krytorekenných sadeníc smreka a buka, boli založené na jar 2011. Experiment bol založený v díazajne latinských štvorcov. Plochy pre umela výsadbu smreka boli vysadené v spone 200 × 200 cm, v počte 40 kusov na jednu subplochu a pre umelé výsadbu buka
v spone 120 × 120 cm, v počte 120 kusů na jednu subplochu. Pre naše účely sme v rámci týchto výsadiel v máji 2011 založili 16 výskumných plôch smreka a 16 výskumných plôch buka rozdelením pôvodných plôch na polovicu, pričom v prípade smreka sme na každej takto rozdelenéj subploche vybrali a identifikovali čišom 20 jedincov smreka a 30 jedincov buka. Týmto spôsobom sme pre každy variant ošetrenia, v prípade smreka aj buka, vytvorili po tri opakovania pre aplikáciu obranných zásahov proti nežiaducu vegetácií a štyri referenčné plôchy.


Metódy ochrany výsadiel smreka a buka, prirodzeného zmladenia duba

Cieľom nášho výskumu je vyhodnotiť vplyv aplikovaných spôsobov ošetrenia v boji s nežiaducou vegetáciou na odrastanie sadenia smreka a buka na lokalite DO Husárik a prirodzeného zmladenia duba na lokalite Krupina – Nová Hora. Pri založení plôch sme na oboch lokalitách, DO Husárik a Krupina – Nová Hora, hodnotili počiatočný stav vegetácie, počiatočný stav sadenia smreka a buka, náletu duba a ich zdravotný stav. Na konci vegetačného obdobia sme hodnotili stav vegetácie (pokryvnosť v %, prítomnosť dominantných druhov), výšku a hrúbku sadeníc a náletu. Vykonali sme monitoring zdravotného stavu.

Variant bez zásahu – referenčné plôchy

Na takto označených subplochách sme nevykonali žiadny zásah proti nežiaducí vegetácii, ponechali sme ich na samovývoj. Slúžia ako kontrolné plochy k plochám s aplikovanými spôsobmi boja s nežiaducou vegetáciou.

Variant vyžinanie

Na uvedených subplochách sme na lokalite DO Husárik v máji 2011 podľa potreby vykonali zásah okolo výsadiel smreka a buka na plôškach o vekosti 60 × 60 cm za pomoci krovinorezu. Na lokalite Krupina – Nová Hora sme v júni 2011 vykonali zásah okolo všetkých označených náletov duba na plôškach o vekosti 60 × 61 cm ručne za pomocí kosáka. Zásah vo vegetačnom období 2011 už nebolo potrebné opakovať.

Variant mulčovanie plachtičky

Na týchto subplochách sme na lokalite DO Husárik v máji 2011 aplikovali okolo výsadiel smreka a buka a na lokalite Krupina – Nová Hora v júni 2011 okolo všetkých označených náletov duba, mulčovanie plachtičky typu „EcoCover štvorc“ o rozmere 65 × 65 cm, variant dlhodobé (vystužené juto), pri ktorých výrobe udáva životnosť 18 – 36 mesiacov. V prípade duba bolo potrebné odstrániť pôvodnú vegetáciu okolo označených jedincov.

Variant štiepka

Na subplochách označených ako „štiepka“ sme na lokalite DO Husárik v máji 2011 aplikovali drevnú štiepku okolo výsadiel smreka a buka a v júni 2011 na lokalite Krupina – Nová Hora okolo všetkých označených náletov duba, na plôškach o vekosti 60 × 60 cm vo vrstve o hrúbke drevnej štiepky 10 cm. V prípade duba bolo opät potrebné odstrániť pôvodnú vegetáciu okolo označených jedincov.

Variant aplikácia herbicidu

Na subplochách na lokalite DO Husárik sme v máji 2011 aplikovali chemický prípravok s účinnou látkou glyphosate, vzhladom k tomu, že na lokalite dominujú druhy ako Rubus sp., Vaccinium sp. a iné širokolisté druhy, okolo výsadiel smreka a buka a na plôškach o vekosti 60 × 60 cm, pričom niektoré plôšky boli v danom čase bez pokryvu vegetácie. Na lokalite Krupina – Nová Hora sme v júni 2011 aplikovali chemický prípravok s účinnou látkou granicid, nakoľko dominujúčim druhom na celej lokalite je lipnica hájna (Poa nemoralis L.), okolo všetkých označených náletov duba na plôškach o vekosti 60 × 60 cm. Výsady smreka a buka, respektive nálet duba, sme chránili papierovými krytmi. Na aplikáciu herbicidného prípravku sme použili postrekoavač SOLO 425.
Výsledky a diskuse

Cílem potlačení nežiaduceho vplyvu konkurenčnej vegetácie je zlepšenie rastu cieľových druhov drevín. Údaje získané a analyzované po prvom roku založenia experimentu sice nemajú zatiaľ veľkú vypovedaciu hodnotu (obr. 1 a, b), ale mohu uznáť trend budúcich sledovaných období. Môžeme zohodnotiť, že najvyšší priemerný výškový prístup sme u sledovaných drevín zaznamenali v prípade prirodzeného zmoldenia duba, pričom najprízvisnejší vplyv sa preukázal pri aplikácii štiepky (v hrúbke vrstvy 10 cm). Pre porovnanie GREENLY, RAKOW (1995) udávajú najvýše priemerný prístup duba pri hrúbke štiepky 7,5 cm oproti porovnávacím hrúbkam 15 a 25 cm. Najvyšší priemerný hrubkový prístup sme zaznamenali v prípade smrek (variant mliečovacie plachtíčky), i keď napríklad SIMESHTO (2001) uvádza naopak aplikáciu herbicidu ako variant, v ktorom sadenie smrek dosiahlo najlepšie výsledky v porovnaní so štiepokou a neošetreným variantom. Najnižší priemerné hodnoty výškového i hrubkového prístupu sme zaznamenali pre drevinu buk, čoho príčinou môže byť napríklad šok z presadenia.

Na konci vegetačného obdobia sme hodnotili vplyv aplikovaných zásahov na potlačenie rastu nežiaducej vegetácie. Na lokalite DO Husárík sme zaznamenali výskyt najmä druhov Vaccinium myrtillus L., Rubus sp., Calamagrostis epigejos L. Roth, Pou sp., Carex sp., Droyopterus carthusiana (Vill.) H. P. Fuchs. Po prvom roku riešenia môžeme zohodnotiť aplikáciu mliečovacích plachtíčiek ako najúčinniejsiušiu metódu (pokryvnosť buriny do 5%). Pokryvnosť do 10% sme zaznamenali pri aplikácii štiepky a herbicidu (obr. 1 c). Pokryvnosť pri variante vyžínanie sa takmer zhoduje s údajmi získanými z referenčných (kontrolných) ploch (do 25 %), čo môže byť do istej miery ovplyvnené tým, že plochy „vyžínanie“ a „kontrola“ predstavovali rovnomer počiatočný stav na začiatku vegetačného obdobia 2011 (čerstvá holina). Čiže zásah vyžínanie sme aplikovali len okolo jedincov, ktoré bolo nutné ošetriť (rozvoj nežiaducej vegetácie bol už viditeľný). Na lokalite Krupina – Nová Hora sa taktiež ako najúčinniejsiušiu metódu, vzhľadom na pokryvnosť nežiaducej vegetácie po prvom roku riešenia, prejavila aplikácia mliečovacích plachtíčiek (pokryvnosť do 5%). Pri aplikácii štiepky sme zaznamenali pokryvnosť do 15% a pri vyžínaní do 25%. GREENLY, RAKOW (1995) testovali rôzne hrúbky drevenej štiepky (7,5 cm, 15 cm a 25 cm) na vplyv buriny v okolí sadencov drevín a uvádzajú, že stupen zaburinenia a hrubky významne poklesli so stúpajúcim hrúbkou drevenej štiepky. Vysoký podiel pokryvnosti v rámci variantu „herbicid“, takmer zhodný s údajmi z referenčných ploch (Obrázok 1c), možno zdôvodniť prípadne i oneskorenou aplikáciou chemického postreku.

Obrázok 1. Prehľad výsledkov získaných po prvom roku sledovania rôznych spôsobov boja s nežiaducou vegetáciou
Na začátku a na konci vegetačního období 2011 sme zhodnotili zdravotný stav sadeného buka a smreka na lokalitě DO Husárik a přirozeného zmladění duba na lokalitě Krupina – Nová Hora. Na hodnotení sme použili 5-stupňovou stupnici, přičemž stupeň 1 predstavuje zdravé, vitální jedince a stupeň 5 jedince odumíraté (Obrázek 1d). Po prvém roku sedování můžeme zhodnotit za všetky sedovane druhy, že najvyššie percentuálnie zastúpenie jedincov bol v 1. stupni poškodenia (SM 83 %, BK 58 % a DB 69 %), t. j. jedince, ktoré predstavujú potenciál nasledujúcej generácie. V prípade sadeného buka a smreka je ešte dôležité poznamenať pomerne vysoké percento 5. stupeňa poškodenia (BK 9 %, SM 10 %), čiže jedince odumírete, čoho za jednu z príčin možno považovať zdravotný stav sadbového materiálu. Na lokalite DO Husárik sme zaznamenali napriek výskytu hmyzných škodcov Hyllobius sp. v prípade smreka a hubových patogénov (nekrózy) na kmeni, poškodenie termínných výhonkov odhryzom (zajac) v prípade buka. Na prírodnom zmladzení duba sa hneje vyskytovala najmä mučnička dudová (Erysiphe albitoides Griffon & Maubl.). Sipelehto (2001) hodnotil zdravotný stav smreka, brezy a osiky po ošetrení rôznymi mušlovacami materiálmi a herbicidom, pričom sme najväčšie percento zdravých jedincov zaznamenal práve v skupine jedincov ošetrených herbicidom.

Záver

V prípade sme chceli poukázať na rôzne metódy boja s nežiaducou vegetáciou, a to jednak ich vplyvu na samotné cieľové dreviny (sm, bk, db), na zlepšenie ich odrastania mimo konkurenčný vplyv vegetácie, a jednak na samotný vývoj nežiaducей vegetácie. Tótiž ako vieame starostlivosť o mladé lesné porasty patrí medzi lesnícke činnosti, ktoré z krátkodobého pohľadu neprinásajú finančný efekt, ale je treba si uvedomiť, že sú jednou z rozhodujúcich podmienok zdravého vývoja kultúr, nárastov na obnovovaných plochách, resp. zabezpečenia zvyšujúceho sa podielu prírodneho zmladzenia. V článku poskytujeme zatia len predbežné výsledky riešenia z násľe výzkumu, v ktorom budeme pokračovať i nasledujúce vegetačné obdobie, aby sme dosiahli komplexnejší pohľad na riešení problematiky. Metódy ochrany totiž nestárač ak súbor opatrení, ktorých cieľom je nielen znižiť škodlivý vplyv konkurenčnej vegetácie, ale zabezpečiť na obnovované ploche zdravý, dobre prirastajúci mladý porast cieľových dreven. Na základe doteraz získaných údajov je ešte predčasné hovoriť o akejkoľvek finančnej efektivnosti nami aplikovaných metód, čo si ale predkladáme ako jeden z cieľov celkového zhodnotenia riešenia tohto výzkumu, keďže efektívnosť obraných zásiakov je potrebné posudzovať nielen z hľadiska nákladov vyzenaloých na samotný zásah ale i z hľadiska počtu uchránených jedincov, totiž treba si zodpovedať i otázku či náklady na úspešnú obnovu prevyšla náklady vyzenaloé na obranné opatrenia, pretože ak bez zásahu nie je možné dosiahnuť obnovný cieľ, je plánovaný zásah na mieste.

Podakovanie

Tento článok bol vytvorený realizáciou projektu „Progresívne technológie ochrany lesných drevín juvenilných rastových štádií“ (ITMS: 26220220120), na základe podpory operačného programu Výskum a vývoj financovaného z Európskeho fondu regionálneho rozvoja.

Literatúra


KRZIŠOVÁ, E., CHVANIČOVÁ, G., HOMOLOVÁ, Z., 2011: Producing biomass and a competitive effect of selected plant species on the soil vegetation of different ecological conditions at various elevations in the Tatras. Štúdie o Tatranskom národnom parku, 10 (43), Tatranská Lomnica, Štátne lešy TANAP-u, s. 157-166.


